** ACTA 기계학습과 딥러닝 (20시간 과정)**
(2주, 매주 10시간: 주중 야간 줌수업 3 시간씩 2 회 , 토 4 시간 대면수업 )
대상: ACTA 기계학습과 딥러닝은 중급 파이썬 수준의 엔지니어들이 기계학습과 딮러닝의 역량을 단기간에 강화하고자 하는 경우에 적합한 과정
Machine Learning (10시간)
1. Basics – Curse of dimensionality, bias-variance tradeoff, K-nearest neighbors
2. Linear Regression – Parameter estimation by least squares,
3. Classification – Logistic regression & Maximum likelihood
4. Resampling methods – Training, validation, and test datasets
5. Model selection and regularization – Ridge and Lasso, forward & backward selections
6. Non-linear methods – Tree-based, support vector machine, K-means clustering
Deep Learning (10시간)
1. MLP – gradient descent, hidden layers, architecture design
2. Optimization & Regularization – initialization, stochastic gradient descent, ADAM, early stopping
3. CNN – parameter sharing, equivariance to translation, computational benefit, pooling
4. RNN – computational graphs, teacher forcing, bidirectional RNN, vanishing & exploding gradients, LSTM
5. Transformer – query/key/value, attention, masked learning & predictive learning
6. Advanced topics (high level concept explanations) – generalization, representation, unsupervised learning, LLM, etc.
RELATED SITE LINK